

SPACE FLIGHT ARCHITECTURE DOMAINS

Exploration, Science, Commerce & Security

Uranus 19 AU

Neptune

Pluto

40 AU

200-400 AU

LEO TO CIS-LUNAR CLPS/ARTEMIS & CIS-LUNAR **DEVELOPMENT**

- Science Payloads
- Mining & Resource Extraction
- Manufacturing
- Fuel Depots / In Situ Derived Prop
- Space Solar Power
- Outposts (In-Space & Surface)
- Orbital Debris Mitigation and Remediation
- Planetary Defense Assets
- National Security Space Assets

"Commercially Sustained Cis-Lunar Infrastructure"

MESO-SOLAR MOON-TO-MARS & EXPANDING SCIENCE/EXPLORATION

- Humans on Mars
- Search for Life
- Sample Return
- Outer Planetary Science
- Resource Mapping
- Asteroid Prospecting

Saturn 9.5 AL

Jupiter 5.2 AU

Mars 1.5 AU

"Rapid & Efficient Deep Space Transit

EXTRA-SOLAR

- >50 AU
- Heliosphere / Local ISM 100-200 AU
- Pristine ISM
- Solar Gravity Lens 500-800 AU
- ❖ Nearby Stars / Exoplanets 4.5-20 LY

STMD STRATEGIC FRAMEWORK ENVISIONED FUTURE

GO Thrust – Advanced Propulsion Vision

Produce advanced propulsion technologies that enable future exploration/science/commercial missions

Developing advanced propulsion technologies to push the cutting edge farther and faster than ever before

ARCHITECTURE DRIVEN PROPULSION TECHNOLOGIES

SCIENCE/EXPLORATION/COMMERCE/SECURITY CAPABILITIES

High-ΔV EP Spacecraft

High-ΔV XX-kWe EP Capability

- 12-kWe Class HET → Gateway/PPE SEP
- 7-14-kWe Class GIT → Advanced NEXT
- 100-kWe Class Electric Thrusters including HET, MPD, VASIMR, & other options
 → Mars Transportation System

High-ΔV ESPA-Class Deep Space Spacecraft

Small Spacecraft Science, Commercial & Security Missions Requiring High-ΔV EP Capability

- Focus on ESPA-Class Sub-kW EP
- Flight Qualify & Demonstrate
- SMD SIMPLEx Mission Infusion

Outer Planetary Robotic NEP Spacecraft

Deep Space Nuclear Flagship Capabilities

- Propulsion Technologies Enabling Nuclear Propulsion Robotic Spacecraft
 - Fission Surface Power Derived NEP
 - Dynamic-RPS Derived NEP
 - Advanced LCF Derived NEP

Green Propellant Deep Space Spacecraft

Green Propellant Adoption & Infusion into Missions of Opportunity

- Facilitate Provider/User Transition
- Incentivize Mission Opportunities
- Lunar Flashlight Mission Infusion

Earth Pole Sitting Observatories Sun Pole Sitting Observatories

Observational Platforms for Science, Commercial & Security Missions Requiring Unlimited ΔV Capability

- Solar Sail Development & Demonstration
 - Monitor Solar Cruiser Project
 - Supplement SMD Technology Development as Warranted
 - Support Early-Stage Concept R&D

Thruster Advancement for Low Temperature Ops in Space

Deep Space Science Missions Requiring Cold Tolerant Storable Propulsion for Extreme Environments Access

- MON-25/MMH Bipropellant Thruster Technology
- Compact Lander Propulsion TALOS → CLPS Infusion
- Deep Space Variant Extensible TALOS → Enceladus

INSPIRATION DRIVEN RESEARCH TRANSFORMATIONAL CAPABILITIES

Sustained investment in Advanced Energetic Propulsion research & innovation enables the possibility for new breakthrough technologies

Low-α NEP

Advanced Solid Core

Pulsed Fission

Directed Energy & Sails

Antimatter

Capability Goals:

- $\alpha < 5 \text{ kg/kW}$
- Thrust-to-Weight ≥ 0.6
- Relativistic S/C Velocity ≥ 0.1

Fusion

Breakthrough Science

All activities depicted not currently funded or approved. Depicts "notional future" to guide technology vision.

ADVANCED PROPULSION CAPABILITY OUTCOMES

Propulsion Technology Development Streams

Lunar Gateway

Exploration (E)1: Gateway/PPE SEP

Develop 12.5-kWe SEP string and enable 50-kWe thruster array for lunar orbit maneuvering and NRHO station keeping

Artemis/Mars

E2: Cryogenic CP

Affordable, highly reusable cryogenic propulsion to provide in-space transport and lunar surface access with extensibility to Mars

Mars Transport

E3-A: NEP/CP Hybrid

Multi-MW NEP to provide cruise ΔV plus affordable & highly reusable cryogenic propulsion to provide gravity well ΔV

E3-B: NTP

High thrust NTP to provide gravity well ΔV plus reactor integrated OMS to provide supplemental ΔV

TRL 6-8

EXPLORATION ARCHITECTURES

Exploration Architecture Systems Development

Flagship SEP

Science (S)1: High-ΔV SEP

Develop 7-14 kWe gridded ion EP string to enable more ambitious very high-ΔV deep space robotic missions

Extreme Access Storable Propulsion

S2-A: Baseline TALOS

Baseline TALOS: In-space cold tolerant storable pulse mode bi-propulsionto enable extreme environment surface access

S2-B: Extensible TALOS

Extensible TALOS: Deep space variant modifications & qualification for high throughput, long-burn orbit transfer and extreme access

High-ΔV Small S/C

S3: ESPA Sub-kW SEP

Fully flight qualified high throughput, radiationtolerant sub-kW Xenon HET enabling high-ΔV ESPA-class deep space missions

Unique Platforms

S4: Solar Sail

Matured solar sail technology to provide essentially unlimited S/CΔV as an enabler of unique platform capabilities

Green Prop Adoption

S5: Green Propulsion

Facilitate green propellant infusion by incentivizing mission adoption and PPP opportunities to mature a wide range of thrust classes

TRL 6-8

SCIENCE, COMMERCE & SECURITY

INSPIRATION DRIVEN RESEARCH

Science, Commerce & Security Technology Development

Transformational CP

Transformational (T)1: RDRE

Early-stage R&D focused on RDRE maturation & prototype demonstrations to achieve transformational gains in CP performance for launch, inspace, and lander systems

Flagship NEP

T2: Robotic S/C NEP

Propulsion technologies enabling low-to-moderate power NEP transportation systems (FSP/Dynamic-RPS/LCF Derived NEP)

Rapid Transit Interstellar Probe

T3: Near Sun STP

Early-stage R&D focusing on transformational STP capability to enable solar perihelion burnOberth maneuvers and the attainment of high solar system escape velocities

Advanced Energetic Propulsion

T4: Fusion/AEP Concepts

Early-stage R&D focused on rapid prototype demonstration of nuclear fusion propulsion technologies and AEP concepts to achieve transformational capabilities for fast & efficient solar system wide access

TRL 3-6

Near Term Long Term

Transformational Capability R&D

SOA – ELECTRIC PROPULSION SYSTEMS

SOA – CHEMICAL & THERMAL PROPULSION SYSTEMS

Historical Developments & Projected Capabilities

SOA – SPACE NUCLEAR PROPULSION & POWER SYSTEMS

Historical Developments & Projected Capabilities

Technology Objective Index Gateway/PPE SEP Cryogenic Propulsion Mars NEP/CP Hybrid Mars NTP High-∆V SEP **Baseline TALOS Extensible TALOS** ESPA Sub-kW SEP Solar Sail Propulsion **Green Propellant RDRE Propulsion T1 T2** Flagship NEP **T3** Interstellar Probe STP Fusion/AEP

Technology Elements

CONCLUSIONS & HIGH LEVEL DEVELOPMENT STRATEGY

- Architecture Driven Propulsion Technology Strategy is Essentially On Track
 - Emphasis on sustained portfolio execution & commitment to deliveries, including accommodation of ground infrastructure impacts
 - Additional mid-TRL investment is needed in a few priority areas (e.g., ESPA-Class Sub-kW EP & Beyond NextSTEP High-Power EP)
- Transformational Capability R&D Portfolio in need of Programmatic Restructuring & Significant Funding Augmentation
- High Level Development Strategy

Architectural Outcome	Technology Capability Goal	Recommended Action	Investment Trend
Gateway/PPE SEP	12 kWe HET String / 50 kW SEP System	Sustain Execution & Commitment to PPE/Gateway Delivery	Sustain
Flagship High-ΔV SEP	7-14 kWe Gridded Ion EP String	Develop Advanced NEXT via Interagency Collaboration + SBIR + PPP	Augment
High-Power Exploration NEP	100 kWe HET, MPD, VASIMR, etc.	Industry Led Development/Qual via STRG + SBIR + PPP (i.e., Beyond NextSTEP)	Augment
ESPA-Class High-ΔV SEP	0.5-1 kWe (nominal) EP String	Industry Led Development/Qualification/Demo via SST/GCD PPP	Augment
Extreme Cold Environment CP	Baseline MON25/MMH TALOS	Sustain Execution & Commitment to PPP CLPS Delivery	Sustain
	Deep Space Variant TALOS	Commit to Industry Led Development/Qualification via PPP	Augment
Green Propellant CP	Reduced Cost / Expanded Thrust Range	Facilitate Infusion & Industry Led Development via SBIR/STTR + PPP + Incentives	Sustain
Unlimited ΔV Platforms PLP	Flight Demonstrated Solar Sail Technology	Monitor Solar Cruiser + Supplemental Tech Dev + SBIR/STTR + Early-Stage R&D	Sustain
RDRE CP	Transformative CP Performance	Sustain Early-Stage R&D & Transition to FY23 Mid-TRL Prototype Development	Augment
Flagship NEP	Transformative Robotic Science NEP	Evaluate/Facilitate FSP/Dynamic-RPS/LCF NEP System Integration & Maturation	Augment
Interstellar Probe Near Sun STP	Transformative Near Sun STP Capability	Sustain Early-Stage R&D & Transition to FY23 Mid-TRL Prototype Development	Augment
Fusion/AEP Concepts	Transformative Fusion/AEP Capability	Establish Comprehensive Nuclear Fusion/AEP Early-Stage R&D Portfolio	Augment

ADVANCED PROPULSION TECHNOLOGY DOMAIN

Taxonomy & Acronym Glossary

PROPULSION TECHNOLOGIES

AEP

CROSS-CUTTING SUPPORT TECHNOLOGIES

AEP - Advanced Energetic Propulsion

ACO - Announcement of Collaborative Opportunity

ACS – Attitude Control System

AMSM – Advanced Materials, Structures & Manufacturing

AU - Astronomical Units

BUK – Soviet Era Fast Fission Space Reactor (Derived from Bouk → "Beech Tree")

CP – Chemical Propulsion

c – Speed of Light

CFM – Cryogenic Fluid Management

CLPS – Commercial Lunar Payload Services

EML1 - Earth Moon Lagrange Point 1

Enceladus – Icy Moon of Saturn

EP – Electric Propulsion

ESPA - Evolved Secondary Payload Adaptor

FSP – Fission Surface Power

GCD – Games Changing Development (Program)

GEO – Geo Synchronous Orbit

GIT – Gridded Ion Thruster

GPIM – Green Propulsion Infusion Mission

GTO – Geo Transfer Orbit

HET - Hall Effect Thruster

HLS – Human Landing System

IRAD - Internal R&D

ISM – Interstellar Medium

ACRONYMS

Ispvac – Vacuum Specific Impulse

LCF - Lattice Confined Fusion

LEO – Low Earth Orbit

LLO – Low Lunar Orbit

LOX – Liquid Oxygen

LY - Light Year

MMH – Mono-Methyl Hydrazine

MON – Mixed Oxides of Nitrogen

MPD - Magneto Plasma Dynamic (Thruster)

MPS – Main Propulsion System

NASA – National Aeronautics and Space Administration

NEA - Near Earth Asteroid

NEO – Near Earth Object

NEP - Nuclear Electric Propulsion

NEXT – Next Evolutionary Xenon Thruster

NRHO - Near Rectilinear Halo Orbit

NTP - Nuclear Thermal Propulsion **PLP – Propellant-Less Propulsion**

PPE – Propulsion & Power Element

(Foundational Gateway)

PPP - Public Private Partnership

PPU – Power Processing Unit

P&D – Power & Distribution

R&D – Research & Development

RCS – Reaction Control System

RDRE – Rotating Detonation Rocket Engine

RPS – Radioisotope Power System

SBIR - Small Business Innovation Research (Program)

S/C - Spacecraft

SEP - Solar Electric Propulsion

SIMPLEx – Small Innovative Missions for

Planetary Exploration

SMD – Science Mission Directorate

SOA – State of Art

SNAP-10A – System for Nuclear Auxiliary Power

SNP – Space Nuclear Propulsion (Project)

SP-100 – Space Reactor Prototype

SST – Small Spacecraft Technology (Program)

STP - Solar Thermal Propulsion

STRG – Space Technology Research Grants

STTR - Small Business Technology Transfer

TALOS – Thruster Advancement for Low Temperature Operations in Space

TDM – Technology Demonstration Mission (Program)

TOPAZ – Soviet Era Thermal Fission Space Reactor

TP – Tipping Point

TRL – Technology Readiness Level

T/W – Thrust-to-Weight (ratio)

VASIMR – Variable Specific impulse Magnetoplasma Rocket

ZBO - Zero Boil Off

α – System Specific Mass (kg/kW)

ΔV – Spacecraft Velocity Change